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When plotted against concentration v°2, the viscosity r/o curve of isotropic solutions of lyotropic nematic 
mesomorphic polymers increases according to: 

r/°=r/o[[r/] v°+ (/r/4)Jr/] 2(v°)2 + K2(In X ) 2 [ r / ] 3 ( V 0 ) 3 4  - - . . ]  

in which rio is the solvent viscosity, K 2 a numerical constant, ~ is the average molecular axial ratio and 
[r/] the intrinsic viscosity as defined by: 

(14) 2E 2 1 3 +15 
[7?] - 45 In 2~-1.84 ~ In 2~-0.61 

At the concentration v~ an anisotropic phase appears and the viscosity curve shows a decrease in slope 
followed by a change in direction at a peak viscosity r/P at v~. Upon further increase in v ° the system 
undergoes a phase inversion and finally turns fully anisotropic at v~. In the biphasic interval the viscosity 
is described by: 

r/O=r/rn,,t 1 -I (5~k+2) 
2(2,+1) Vir~ 

where ~ = r / inc / r /mat ,  the ratio of the inclusions viscosity to the matrix viscosity, and V~nc the volume fraction 
of the inclusions in the system. It must be emphasized that the molecular weight of the polymer in both 
phases changes continuously with concentration, resulting in commensurate changes in r/~nce, r/ma t 
and their ratio X. In the anisotropic region the viscosity first decreases moderately and then increases 
precipitously with v °, according to: 

v o 

r/°=r/° ~ In 2~-1.8+1n2~-0.61 +2 ] g25 o 

in which S is an order parameter and V25o , V E are volumes swept by the orbits of the flowing rodlike 
macromolecules. The equations give results in good qualitative and fair quantitative agreement with 
experimental data in the literature. 

INTRODUCTION 

High molecular weight rigid backbone polymers may 
exhibit in solution the unique property of lyotropic 
nematic mesomorphicity (liquid crystallinity) once they 
surpass a certain critical volume concentration v~. In the 
concentration interval 0<v~ <v* the solution is com- 
pletely isotropic and the total concentration v~ equals the 
concentration of the isotropic phase v 2. 

When a solid polymer capable of lyotropic mesomor- 
phicity is gradually diluted, it first passes into a single 
anisotropic (oriented) liquid crystalline phase of con- 
centration v~. The point where isotropic inclusions in the 
anisotropic matrix appear upon dilution or disappear 
upon concentration, is characterized by a polymer con- 
centration v~. Above it, v~z=v~. In the concentration 
interval v 2. ~< v 2° ~< v A there exist two phases, isotropic and 
anisotropic. If allowed a period of days or weeks the 
phases will separate into two layers, but when first 
appeared and during viscosity measurements the phases 

are microscopically intermingled, are not at a state of true 
equilibrium, and may be identified by such means as 
cross-polarized light microscopy. The spontaneous phase 
transitions at v~ and v~ were observed by many workers. 
Theoretical treatments of the phase transitions, based on 
thermodynamics 1-~5 and molecular dynamics 5 were 
reasonably successful in explaining the phenomena. In the 
treatment of Flory 3'4'6-13, the parameters required for 
the prediction of phase transitions were experimentally 
measurable, a fact that contributed to the wide acceptance 
of his work. 

A characteristic feature of the systems is that the total 
viscosity r/° of the system containing one or two liquid 
phases, passes through a pronounced maximum when 
plotted as a function of the concentration v~z. Following 
Hermans ~6 it became customary to identify the peak in 
viscosity with the concentration v~; that is, the solution 
was assumed to be fully isotropic in the concentration 
interval 0 < v 2 < v~' and then abruptly change to anisot- 
ropic in the range v~ > v~. As will be shown in this work, 
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F i g u r e  I Viscosity as a function of polymer concentration for the 
system poly (50% n-hexyl + 50% n-propyl) isocyanate of M w = 

41 000 in toluene at 25°C 

the identification of the peak in the viscosity curve with v* 
is implausible. Furthermore, our observations ~7-2~ on 
the systems poly(n-alklisocyanate)/solvent and poly(n- 
alkyl + aralkyl)isocyanate/solvent indicated that the 
point v~' occurs at a concentration lower than vg, the 
concentration associated with the viscosity peak, r/p. 
Similar observations were reported by Iizuka 22 and Kiss 
and Porter 2a on solutions of poly(7-benzyl-L-glutamate) 
(PBLG) in several solvents. Our observations indicate 
further 2°'21 that the solution does not become fully 
ansiotropic once v~ is surpassed, the point v~ is reached 
only after a substantial reduction in r/°, from qP to r/A. A 
similar observation was mentioned by Iizuka 22. The 
experimental observations indicate that 0,~ v* < v~ < v~ 
< 1.0, and that the corresponding viscosities follow the 
relationship 0 < r/* < r/p > qA< rf, r/S being the viscosity of 
the polymeric system in the gel or solid state. The data 
were determined by two techniques: measurements of the 
total viscosity I/° of the system as a function of v~, 
and microscopic observations in cross-polarized light. 

In Figure 1 a plot of the viscosity r/° vs. concentration v2 ° 
for poly(50~ n-hexyl+50Vo n-propyl)isocyanate in to- 
luene is shown 20,21. The weight average molecular weight 
of the polymer was Mw=41 000. In the figure the con- 
centrations at which phase transitions were observed by 
means of cross-polarized light microscopy are also shown. 
The figure is typical of several other polyisocyanate/sol- 
vent systems 21. 

The curve in Figure 1 has four important features: 
(1) The rate of increase of viscosity with concentration 
becomes smaller once the anisotropic phase makes its first 
appearance at v~, and a shoulder develops on the curve. 
(2) The peak in the curve is at a concentration v~ 
substantially above v*. (3) The point of phase inversion is 
between v~ and v2 a. (4) The point v A occurs at a con- 
centration smaller than the concentration associated with 
r#,,i, the viscosity minimum on the high concentration side 
of the viscosity peak. The shoulder observed by us in 
many polyisocyanate/solvent systems 2i in the close vi- 
cinity of v* was observed by Iizuka 22 and Kiss and 
Porter 23 on the low concentration slope of the viscosity 
curves of PBLG/SOLVENT systems. 

Our microscopic observations on lyotropic liquid 
crystalline polyisocyanides 24 and polyisocyanates ~7-~9 
indicated that the anisotropic phase in the concentration 

interval v*<v°<v p preferentially adopts the form of 
spherical droplets supended in an isotropic matrix. 
Similar observations were reported by Robinson 25 on 
PBLG in several solvents. However, polymers such as 
cellulose derivatives and aromatic homo- and copo- 
lyamides do not exhibit well-defined droplets of the 
anisotropic phase suspended in the isotropic matrix. In 
these cases, the preferred appearance under the cross- 
polarized light microscope is in the form of ill-defined 
highly birefringent blotches of the anisotropic phase 
fading at their boundaries into the isotropic non- 
birefringent matrix. With increased concentration, the 
fraction of the area in the field of vision that exhibits 
birefringence increases until it becomes the major phase, 
c.arrying the isotropic phase as poorly defined inclusions in 
an anisotropic matrix. Beyond v~, the system becomes fully 
anisotropic and the last vestiges of isotropy disappear. In 
only very few instances were we able to observe anisot- 
ropic droplets, in cellulose derivatives or aromatic po- 
lyamide systems, similar to the few shown in Figure 10 of 
Morgan's paper 16. Our conclusion is that the anisotropic 
phase of polyisocyanides, polyisocyanates and PBLG 
makes its initial appearance preferentially in the form of 
well-defined droplets, while the anisotropic phases of 
aromatic polyamides and cellulose derivatives appear 
preferentially as ill-defined birefringent blotches. 
Literature data z6'/v indicate the viscosity curves of such 
polymers to be rather smooth in the v ° < v~ range and to 
exhibit no shoulders. In our laboratories, attempts to 
detect the shoulder on a viscosity curve ofa mesomorphic 
aromatic copolyamide have failed. The above obser- 
vations lead us to conclude that the appearance of a 
shoulder on the viscosity curve at about v~ < is associated 
with the appearance of the anisotropic phase in the form 
of well-defined spherical droplets, floating in the isotropic 
matrix. Therefore, the following treatment of the biphasic 
interval, v* < v ° < v~, will be limited to systems in which 
the anisotropic phase makes its first appearance in the 
form of spherical droplets. The gross conclusions ob- 
tained from such a treatment are most likely to be 
applicable to systems in which the anisotropic phase 
adopts an ill-defined blotchy form. One should not expect, 
however, that this treatment will be applicable in every 
detail. 

In the following sections the isotropic regime, the 
biphasic interval and the anisotropic region will be 
treated. The approach will be based upon experimental 
observations. At the same time physical and rheological 
arguments will be invoked in order to explain and predict 
the viscosity behaviour of the system. 

THE ISOTROPIC REGIME 

In the limit of zero shear, let q denote the viscosity of a 
dilute isotropic suspension of macromolecules in a solvent 
whose viscosity is qo. Then (q -l/o)fl/o = (q/qo) - 1 = qsp the 
specific viscosity. Letting c denote the concentrations of 
the suspended matter and noticing that it may be 
replaceable by the volume fraction v °, Gp/c defines the 
reduced viscosity, and its limiting value at c =0  is the 
intrinsic viscosity (rlsp/c) c = o = [r/]. 

It was shown by Huggins 28 and Simha 29 that r/sp can be 
written as a power series of the type 

rls p= [ r / l c+a2  c2 + a3 c3 + . . .  (x) 
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that the coefficients a i are related to each other as 

a 2 = k l [ q ]  2 , a  3 = k 2 [ q ]  3 . . . .  

and that t/sp can therefore be written as 

rls p = [t/]c + k I [r/] 2c2 n t- k2[t/] 3c3... (2) 

where the constants k i are numerical constants inde- 
pendent of the shape of the molecules. The magnitude of 
the intrinsic viscosity depends on the shape of the 
suspended (solute) particles. For a dilute suspension of 
monodisperse solid spheres, [r/] = 2.53°'31 and is known 
as the Einstein coefficient. 

For a suspension of non-spherical molecules, modelled 
by dumb-bells or rods, Simha 29 derived: 

rl~p = [ t t ]c  + k x [rt] %2 + . . .  (3) 

where k~ =0.77 and 

Jr/] = (3/2)(L2/d 2) = (3/2)x 2 (4) 

with x being the axial ratio of the particle length L to its 
diameter d. Riseman and Ullman 32 obtained kl =0.73, 
indicating that a measure of variability around kl = 0.77 is 
possible. In fact, a value of k~ =0.75 was experimentally 
obtained by Hermans 16 from dilute solutions of PBLG in 
the highly viscous solvent m-cresol at low shear stresses. 

An intrinsic viscosity value was derived by 
Eisenschitz 33 for long prolate ellipsoids of axial ratio f i n  
the absence of Brownian motion: 

Y 
In] ~ (5) 

15(ln 2,]'- 1.5) 

w h e r e f = a l / a  2 with ax being the major axis and a z the 
minor axis of the ellipsoid. This derivation was predicated 
on an assumption that the particles are distributed 
isotropically before the onset of motion and that sub- 
sequently each particle moves in a fixed orbit 34. Simha 35 
derived the intrinsic viscosity of prolate ellipsoids off>>l, 
accounting for the influence of Brownian motion, and 
obtained: 

f2 f2 14 
[ t / ] -  - -  + -~ (6)  

15(ln 2f-1 .5)  5(ln 2f -0 .5)  15 

As the volume of an ellipsoid of axes al, a z is not the same 
as that of a cylinder of the same length and diameter, a 
correction factor of 

x =fl2/3)-,/2 (7) 

determined by Tanford 36, may be introduced into equa- 
tions (5) and (6) with the following results: 

[q] ~' 45 \In 2x - 1.84 
(8) 

and 

[r/] = 45 \In 2 x -  1.84 

3 

F l n 2 x - 0 . 6 1 /  15 (9) 
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For prolate ellipsoids [r/]>2.5 in all cases. For x =  10, 
equation (8) yields [r/] = 3.85 and equation (9) yields It/] 
=10.37. Also, It/] increases with x. The reasonable 
agreement between the experimental data of rodlike 
PBLG 16 and equation (3), and through it equation (4), 
indicates that in relatively dilute solutions under low 
shear stresses the hydrodynamic behaviour of rodlike 
particles is very close to that of long and thin prolate 
ellipsoids, or that the experimental techniques are not 
refined enough to differentiate between them. 

The effects of increased concentration on viscosity may 
be visualized in terms of excluded volume. Thus, in very 
dilute solutions there is no overlap of the excluded volume 
of all the solute particles and equation (2) reduces to qsp/c 
~_[t/]. With increased concentration the excluded vo- 
lumes of pairs of solute particles start overlapping each 
other. At this point the second term in the righthand side 
of equation (2) becomes important. It was shown by 
Onsager 1 that the exact magnitude of the 'covolume' of 
two cylinders, i.e. the overlapped part of the excluded 
volume, is a product of the axial ratios, of the angle of 
approach between one another, and of a constant inde- 
pendent of particle shape or angle. The value of the 
constant, n/4, is 0.785, reasonably close to the value 
determined by Simha 29 for k x, namely 0.77. As the particle 
concentration further increases, three particle collisions 
gain in importance and their effects become measurable. 
In this case the 'covolume' of the excluded volume of three 
rods was shown by Onsager 1 to be a product of an 
independent constant, of (In x) and of a factor depending 
on d and L to the third power. When the definition of 
equation (4) is inserted into equation (2), then the cubic 
term shows a dependence on x 6. Therefore, it appears that 
k 2 in the third term on the righthand of equation (2) 
should be replaced by a product of a new constant and (ln 
X)2: 

k2 = K2(ln x) z (10) 

which brings the power series of the specific viscosity, 
equation (2), and the excluded volume approaches to 
show the same sixth power dependence of x in the third 
term of the expansion. 

Assembling the above into a single equation, one 
obtains: 

tls p = [q]c  + (rc/4)rr/]2c 2 + Kz( ln  x)2D,]]3c 3 + . . .  (11) 

where [t/] for rigid backbone macromolecules adopting a 
rodlike conformation is defined by equation (9). Equation 
(11) is almost the same as one obtained by Matheson 37 by 
considering the treatments of Simha 29'3s and Doi 38. The 
numerical value of K 2 and its independence from x are not 
known yet, but may be evaluated from the fit of experim- 
ental results to equation (11). 

In the range of interest, the polymer concentration is 
relatively high. This leads to high values of the viscosity r/ 
that are larger than the solvent viscosity r/o , usually by an 
order of 103 . Therefore, one can approximate the specific 
viscosity by t/s p ~ t//r/0. Also, because of the magnitude ofq 
and the large ratio of q/qo, it appears that in the 
concentration range of interest, where the three terms of 
equation (11) are evident, the solution viscosity and the 
specific viscosity may be of the same order of magnitude. 
Observations on isotropic solutions of high r/or high q.,p 
lead to the same conclusions. 
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When q or qsp are plotted on log-log paper against c or 
against the molecular weight M, then a linear dependence 
of the viscosity on c or M is observed. Experimental 
observations 2v'39'4° indicate that in the limit of zero 
shear, the viscosity within the isotropic regime is related 
to c as: 

q occ a with 5.3 ~< fl t> 3.5 (12) 

For the same set of data 27'39'4° the dependence of 
on M showed the proportionality of: 

t/oc M" with 8 > e/> 5.25 (13) 

In all cases of rigid backbone polymers, the ratio of a/fl 
was larger than unity. The data from ref 40, for example, 
give fl=4.05 and ~=6.35, ~/fl--1.57. The relationship 
between ~ and fl may be explained as follows: from 
equation (2) one may represent the solution viscosity by: 

qoc(Eq]e) p (14) 

In the limit of zero concentration the intrinsic viscosity 
follows the Mark-Houwink relationship 

[ q ] = K M "  (15) 

where K is a characteristic constant. It follows from 
equation (14) and (15) that41: 

qocc~M ~ (16) 

with 

a=a/fl  (17) 

Ridgid backbone polymers follow a dependence ofa > 1 in 
their Mark-Houwink relationship. Therefore a/fl > 1 as 
observed 27'39'4°. In the case of flexible polymers a <  1. 
Here the exponent fl in equation (12) will be larger than 
the exponent a in equation (13) 27'4°-44. The fact that for 
rigid backbone polymers with a > 1, • > fl helps in under- 
standing the changes in the viscosity within the biphasic 
interval. 

The above discussion applies to monodisperse po- 
lymers where the number average molecular weight, M,, 
equals the weight average molecular weight, Mw. In the 
reality of rigid backbone polymers the polymers are 
polydisperse with Mw > M,. In the case of condensation 
polymers prepared under equilibrium conditions, such as 
poly-p-benzamide (PBA) or poly-p-phenylenetereph- 
thalamide (PPTPA), the ratio of M U M "  is ~2. The 
anionically prepared polyisocyanates exhibit 
1 < Mw/M . < 2. For flexible polymers, the relationship 

r / = M  3"4 (18) 

appears to be valid when M = M w  4 5  and not when M 
= M,. The solution viscosity of flexible polymers follows 
the same exponential dependences on (cM) when M 
= m w 4 5 :  

r/=(cM) 3"4 (19) 

From the work of Papkov et al. 27 and Baird and 
Ballman 4°, the relationships in equations (12) and (13) for 

rigid backbone polymers follow a dependence on Mw and 
not on M,, as for flexible polymers. 

The viscosity of an isotropic solution of a polydisperse 
polymer may be visualized as arising from the summation 
of the viscosities of all the contributing molecular weight 
species in the polymer: 

t 1 oc EciaMi ~ (20) 

where Zc i = c and the molecular weight of the species M i is 
measured in terms of Mw. In the case of phase separation, 
where the polymer partitions into two coexisting so- 
lutions in a manner such that the concentration and 
molecular weight distribtuion (MWD) are not the same in 
both phases, then the effects of MWD on their viscosities is 
expected to be profound. The concentration where the 
phase separation of monodisperse polymers takes place 
was approximated by Flory 4 to be at 

v~- (8 /x ) (1 -2 /x )  (21) 

which for large x may be simplified further to give 

v ~ - 8 / x  (22) 

For polydisperse systems x should be replaced by its 
number average value x,,-° averaged over all molecular 
weight species in the polymer. In terms of weight average 
molecular weights, equation (22) may be rewritten as 

8(Mw/M,) 
v~'~ (23) -0 

X w  

The average axial ratio 2 ° of the polymer in Figure 1 was 
-0  determined as ,-,40. Equation (21) yields v*=0.19 for x, 

= 40. As is shown in the figure, microscopic observations 
indicated v~'--0.19. Several other polyisocyanate systems 
in ref 21 also gave very good agreement between the 
calculated and observed v*. It was gratifying to find that 
equations (21) and (22) hold for polydisperse systems 
when x was replaced by -o X n • 

THE BIPHASIC INTERVAL 

When observed through the cross-polarized light micros- 
cope, the anisotropic phase of polyisocyanates and several 
other polymers first appears as minute birefringent drop- 
lets, as is shown in Figure 3D of ref 17. As the con- 
centration of the polymer increases, the number of the 
anisotropic entities increases as is shown in the upper left 
photograph of Figure 1 or the lower left photograph of 
Figure 4 of the same reference. With the increase in the 
number of birefringent droplets, increases in their average 
size and their size distribution become clear (Figure la in 
ref 46). When a low level of shear is applied to the 
biphasic system by means, say, of a slight movement of the 
coverglass of the sample on the microscope stage, then the 
anistropic droplets start flowing in the currents in the 
isotropic matrix without the droplets being deformed. 
Because of the high fluidity of the isotropic matrix and the 
speed of motion of the spherical anisotropic inclusions, no 
photo-micrographs were obtained, but the motion of 
underformed anisotropic droplets across many lengths of 
the microscopic field of vision was observed in sheared 
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solutions of concentrations slightly above v~. The re- 
sistance of the minute droplets to deformation indicates 
that their viscosity may be higher than that of the 
suspending matrix when present in small amounts. The 
droplets are microscopic yet far greater than molecular 
sizes. Because of this, molecular scale treatments of 
uniform isotropic solutions cannot hold for this case. The 
approach of Taylor 4v in the determination of the viscosity 
of colloidal spherical inclusions was adopted. Corrections 
were made due to the fact that in the biphasic interval of 
polydisperse polymer solution the average molecular 
weight in each phase changes continuously over the range 
of v* < v ° < v a. 

It was shown by Taylor 4/'4~ that the viscosity of a 
suspension of spherical inclusions is 

(52 + 2) ) 
q0 = q,,,, 1 + 2(2 + 1 ~ "  V~,c (24) 

where qmat is the viscosity of the suspending matrix, V~,~ is 
the volume fraction of the inclusions and 

2 =(q,.Jqm,,) (25) 

r/i,~ being the viscosity of the inclusions. From equation 
(24) the intrinsic viscosity of the system is obtained 

52+2 
[q] (26) 

2(2 + 1) 

which varies between the limits of 2.5 for solid spheres 
with 2=  ~ ,  as calculated by Einstein 3°, and 1 for 2 =0. 

Flory and co-workers 6-1° showed that when a so- 
lution of a polydisperse polymer separates into isotropic 
and anisotropic phases, the concentration of the polymer 
in the ansiotropic phase v~ is larger than the con- 
centration in the isotropic phase v2: 

v~ > v ° > v 2 (27) 

and the average molecular weight, or average axial ratio 
in the anisotropic phase ~', is larger than in the isotropic 
phase £%: 

~, >~o>ff ,  (28) 

The numerical evaluation of the detailed parameters for a 
most probably 9 or a Poisson ~° distribution is cumber- 
some, but the evolving picture may be summarized: 
Upon the appearance of minute quantities of anisotropic 
spheres at v~', they preferentially contain the highest 
molecular weight species existing in the system. Since 
these are taken from the initial ~° average, and encompass 
a very small fraction of the polymer, the value of ~, in the 
isotropic matrix will be only slightly reduced. As the 
volume fraction V' of the anisotropic phase increases at 
the expense of the volume fraction Vofthe isotropic phase, 
larger and larger quantities of the higher M fractions 
partition into the anisotropic phase. Since the highest M 
species were used up first, species with decreasing M end 
up in the anisotropic phase, gradually bringing the value 
of ~', down. At the same time, the species remaining in the 
isotropic phase, being depleted of ever increasing amou- 
nts of the higher M fractions, also decrease their ft, value. 
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Finally, at the point v A, ~', equals ~o and the isotropic 
phase vanishes. Schematic descriptions of the above for 

-0 starting at microscopically observable V', moderate x, 
are present in Figures 4 and 8 ofref9. From this reference, 

-0~ for x, >>20, the value of ft, upon approaching v a is far 
smaller than ~°/4 and the value ofx', upon approaching v * 
is much larger than 5~ °. 

From equations (12) and (13) we recall that the de- 
pendence of the viscosity on M is much more pronounced 
than its dependence on the concentration. The total 
increase of v ° over the biphasic region is 1.5 times its value 
at v~. Therefore, even if v 2 will increase from v~ to v~, the 
large drop in ~, over the same concentration interval will 
sharply decrease the viscosity of the isotropic phase 
within the biphasic interval. In fact, because most of the 
polymer added in the biphasic interval ends up in the 
growing and more concentrated anisotropic phase, cha- 
nges in v 2 within this interval are expected to be small. 
This may reinforce the dependence of q on the dropping 
M. Thus, at the point v A the viscosity of the isotropic phase 
whose ft, <if°/4, may be of the order of only 10% of the 
viscosity of the isotropic phase at the point v*. 

To determine the viscosity of the anisotropic inclusions 
several facts must be recognized: 
(1) From the observations on several polyisocyanate 
systems 2°'21, as well as Iizuka 22 and Kiss and Porter 23 on 
PBLG systems, it appears that the viscosity 2°'21,23 or the 
reduced viscosity 22 at the point v~ is about 20% of the 
corresponding values at v*. Moreover, the viscosity values 
at v A are substantial in size. 
(2) The viscosity qP at the point v~ is about 1.6 times the 
magnitude of q,2o-23 
(3) The phase inversion from anisotropic inclusions in an 
isotropic matrix to isotropic inclusions in an anisotropic 
matrix occurs between v~ and v A, at a point where 
microscopy shows the volume of the anisotropic in- 
clusions to be about V'=0.72°'21. 
(4) The change in the concentration v2 ° over the biphasic 
interval is limited and is dependent on the concentration 
v 2 at the point v~'. According to Flory 4 the concentration 
at v A should be 

v A =v~ -~ 1.56v2 ~- 12.5/~, (29) 

with /)2 and ~, corresponding to their values in the 
isotropic phase at v*. A later treatment 13 led to 

v~ = v~ -~ 11.6/~, -~ 1.45(8/ff,)(1 - 2/~,) (30) 

in which the numerical value of 1.45 is closer to the value 
of 1.34 deduced by Onsager 1. Equation (30) was tested on 
several polyisocyanate systems and was found to be 
correct within the experimental margin of error. 

Based on the above facts, and recalling that right near 
v* the anisotropic inclusions indicated that ~/i,c > qm,,t may 
be valid, several trial calculations following equation (24) 
were performed. They were based on the following 
numerical values: at v*, q°=q,,at= 1000; at v A, q0=~/ma, 
=200; the viscosity of the isotropic phase right before 
vanishing at v~ is qi,c = 150. The calculations were perfor- 
med under two assumptions: (1) the viscosity of both 
phases drops linearly from the values at v~ to the 
corresponding values at v~, and (2) the viscosity of both 
phases shows a non-linear convex drop over the biphasic 
interval, reflecting the high dependence of r/° on M. 
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Table I Viscosity of biphasic system, rio, from equation (24), 
convex change assumed 

Vinc ~inc rlmat X rio 

0.00 1500 1000 1.500 1000 
0.05 1487 983 1.513 1077 
0.10 1473 970 1.519 1155 
0.20 1436 933 1.539 1290 
0.30 1392 890 1.564 1401 
0.40 1333 838 1.591 1482 
0.50 1261 772 1.633 1517 
0.60 1166 693 1.683 1500 
0.70 1030 595 1.731 1407 
0.80 850 470 1.809 1209 

0.50 772 1261 0.612 2250 
0.40 693 1166 0.594 1893 
0.30 595 1030 0.578 1557 
0.20 470 850 0.553 1111 
0.10 320 580 0.552 669 
0.05 230 400 0.575 431 
0.00 150 200 0.750 200 

Table 2 Viscosity of biphasic system, ~t O, from eq. (24), linear 
change assumed 

Vinc riinc rimat ;k ri o 

0.00 1500 1000 1.500 1000 
0.05 1435 957 1.499 1048 
0.10 1370 915 1.497 1089 
0.20 1240 830 1.494 1145 
0.30 1110 745 1.490 1169 
0.40 980 660 1.485 1161 
0.50 850 575 1.478 1120 
0.60 720 490 1.469 1046 
0.70 590 405 1.457 941 
0.80 460 320 1.438 802 

0.40 490 720 0.681 1183 
0.30 405 590 0.686 875 
0.20 320 460 0.696 609 
0.10 235 330 0.712 384 
0.05 193 265 0.728 287 
0.00 150 200 0.750 200 

Several values of ql,c at v~ were tried, namely ~/i.c = 1000, 
rh,~= 1200 and qi,¢= 1500. The numerical data for two 
such sets of calculations for convex and linear decrease in 
viscosity starting with r/mat=1000 and rh,¢=1500, are 
presented in Tables 1 and 2, respectively. The results are 
plotted in Figure 2, in which the viscosity q0 in the 
isotropic range shows a concentration dependence of 
about 4 powers, approximating experimental obser- 
vations on rigid backbone polymers. 

Within the biphasic interval the peak ~/P of the curve 
describing the linearly changing viscosity, is closer to v~ 
than v A. It is also much smaller than the value of r/P 
associated with the convexly decreasing viscosity. The 
latter peak appears to be very similar to experimental 
data2O-23 with respect to both position and magnitude. It 
is of interest to note that when a concave drop in viscosity 
was considered, the viscosity peak moved to the left 
making the viscosity ~/* merge with the peak viscosity r/p. 
Both curves in Figure 2 are typical of similar viscosity 
changes down to initial inclusions viscosity of less than 
half the initial matrix viscosity at v*, q~,~ < ~lma,/2. 

At very high values of V', the matrix is the anisotropic 

phase and the inclusions are isotropic. In Tables 1 and 2 q0 
values calculated according to equation (24) covering 
anisotropic inclusions in an isotropic matrix and vice 
versa are presented, respectively, above and below the 
lines in each Table. When plotted, the qo values 
appear to intersect at about V'=0.70. The fact that the 
observed phase inversion occurs at about this value of V' 
seems to indicate that an equivalence of the viscosities 
plus packing considerations may play a role in the process 
of phase inversion. The phase inversion itself may be 
visualized as resulting from the impingement upon one 
another or droplets closely packed in space. It is known 
that monodisperse spheres packed in hexagonal-close 
packing occupy 74% of the total volume of the system. A 
more realistic approach is to estimate the packing density 
under the assumption of random packing. In this case 
monodisperse spheres packed in dense random packing 
occupy 63.5% of the overall volume and when packed in 
loose random packing they occupy 61% of the volume 49. 
We recall that upon appearance, the anisotropic droplets 
are not uniform in size. Figure 4C ofref 19 shows that this 
non-uniformity remains until the point where the droplets 
merge to become a part of the anisotropic matrix. The 
figure is typical of many such figures obtained close to the 
phase inversion boundary. The gradation in size tends to 
increase the volume fraction occupied by the anisotropic 
droplets 3t. Therefore, one may conclude that V' =0.7 is a 
reasonable estimate for the phase inversion as obtained 
from packing considerations, and in agreement with 
experiment. The phase inversion does not take place at the 
same time throughout the volume of the system. The 
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Figure 2 Viscosity as a function of concentration in the isotropic 
regime and the biphasic interval. Viscosity at v~ is 1000 and v~, 200. 
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gradation of transition will tend to smooth the viscosity 
curve in the neighborhood of the phase inversion. 

The viscosity curve in the biphasic interval can be 
approximated by the use of Taylor's 4~ equation (24) in 
which the values of 0,,~,, 0~,~ and 2 change across the 
interval as a consequence of the changes in 2', and 2, in 
accordance with Flory's treatment of polydisperse 
systems6,~.9,1 o. 

THE ANISOTROPIC REGIME 

Once the concentration of rigid backbone macromo- 
lecules in a solution surpasses v~, then the equilibrium 
structure of the solution is that of a nematic liquid crystal. 
During a steady flow viscosity measurement, the preferred 
direction of the rigid backbones is the direction of the 
flOW. 

Even though no adequate theory is available at present 
for describing the viscosity behaviour of anisotropic 
nematic solutions containing polymers such as the po- 
lyisocyanates or the aromatic polyamides, we believe that 
a treatment similar to that of Simha 29'35 is applicable. 
Starting with suspensions containing relatively large 
particles, in which Brownian motion is insignificant, the 
intrinsic viscosity of prolate ellipsoid particles maintain- 
ing the direction of their major axis perpendicular to the 
direction of flow (Z-axis), was shown by Jeffery 5° and 
Guth 51"s2 to be the following: 

f 
[0] ~-2 (31) 

(21n 21- 3) 

When the suspension of such particles is isotropic before 
and during flow, and when the thickness of the particles is 
neglected, equation (32) hold¢ 3- ss: 

f 
[03 - (32) 

3n(ln 2,[- 1.8) 

For rodlike particles whose major axis is fixed during flow 
at given angles 0 and ~o relative to the Z-axis, the intrinsic 
viscosity was determined by Burgers 55 to be 

[q] = (9)F(x) (33) 

where the particle shape factor is defined by 

X 2 
F(x) = - (34) 

6(ln 2 x -  1.8) 

and the orientation factor is 

(g)  = sin40sin2~0 (35) 

It was demonstrated that the intrinsic viscosity of suspen- 
sions of rodlike particles is closer to the value calculated 
from equation (33) than to the value calculated from 
equation (32) 53 . 

In the flow of rodlike macromolecules Brownian mo- 
tion plays a very significant role and cannot be disregar- 
ded. Following Simha, these effects may be accounted for 
through a modification of equation (33): 
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+ (36) 
[0]=( 'q )  6-(In 2./-1.5) -+ 5(ln -0.5) 15 

which, when converted from prolate ellipsoids of axial ratio 
f to cylindrical rods of axial x, changes to 

2X2(g)(  5 6 ) 1 4  (37) 
[0]=  90 \ ln  2x--1.8 ~ In 2x--0.6l +15 

leading to 

1-2x2(0')// 5 6 )+14]vO 

0*P=L96-- -~In  2x-1 .8  -~ In 2x-0.61 15J 2 

(38) 
and, recalling that 0~p=0/0o-1, we obtain for polydis- 
perse polymers 

0°_  ~ F222(g)// 5 6 ) 1  
0 ° L ~ - - - ~ , l n  22-1 .8  t-In 22-0.61 + 2 v ° 

(39) 

where 2 is the average axial ratio. In line with the above 
discussion, this average axial ratio is the weight average 
2 °, one. 

The orientation factor (g)  attains values only within 
the range 1 ~> (,q) ~>054. Upon perfect alignment in the 
direction of flow (,q) =0. At this point 0sp =(14/15)v ° and 
0°~20o5 ° are obtained. Recalling that the observed 
minimum viscosities at the v2 ° > v A range are of the order of 
several hundred times the viscosities of the corresponding 
solvents 2°'21'23, the qsp and 0 ° values obtained above 
under the condition of ( 9 ) = 0  are far too low to be 
acceptable. 

In the literature dealing with conventional low-M 
liquid crystalline substances, there exist parameters other 
than (g)  to define the average orientation of rodlike 
particle¢ 6. Prominent among them is the order para- 
meter S defined by Tsvetkov sv as 

S=(1/2)(3c0s20 - 1) = (p2(cos0)) (40) 

where 0 is the average angle between the molecular axis 
and the direction of flow (Z-axis), P2(cos0) is the second 
Lengendre polynomial, and the brackets indicate an 
average sS. If the orientation of the rodlike particles was 
entirely random, one would have (cos20) = 1/3 and S =0. 
If, however, the particles were all aligned parallel to each 
other in the direction of flow, then cos0 = + 1 and S = 1.0. 
Thus S is a measure of the particle alignmen¢ 9. S can be 
experimentally determined by techniques such as nuclear 
magnetic resonance 56'58'59, Raman spectroscopy 56'59, 
optical birefringence measurements sg'~° and X-ray 
diffractometry 61. 

At the transition point from the isotropic to the meso- 
morphic nematic phase of low-M mesogenic substances, 
the magnitude of the order parameter is about S ~0.4262. 
Upon cooling from that point, the value of S increases 
across the mesomorphic range reaching values of S ~-0.7 
upon solidification 62. From isothermal dilution experi- 
ments on low-M liquid crystal formers resulting in a loss of 
mesogenicity beyond a characteristic concentration, it is 
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obvious that the value of S decreases with increased 
dilution 63 within the nematic state. Physical conside- 
rations indicate that the same behaviour must prevail also 
in rodlike molecules of high molecular weight. This means 
that at the point v~ the fully anisotropic solution is less 
ordered than at higher v2 ° and that S at v~ is smaller than at 
higher concentrations. Adopting the values of S of low-M 
materials as plausible values for polymeric substances, 
equation (37) can be rewritten as: 

14 =2x2( 5 6 + ] 3  (41) 
It/] 90S\ln 2x -1 .8  kln 2x-0.61 

with S-~0.42 at v~ and S~-0.70 at v ° = 1.0. Equations (38) 
and (39) may be corrected accordingly. Equation (41) 
indicates that the viscosity of the anisotropic solution is 
highest at v~ and gradually decreases towards v ° = 1.0. We 
know, however, that this is not the case and that after 
gradually decreasing from qA the viscosity passes through 
a minimum, r/,,i ., and then increases steeply. This increase 
is due, we believe, to crowding effects discussed below. At 
present we are interested in discussing the viscosity curve 
in the interval qA to ~/,,i,. Inserting in equation (38) the 
value of x = 4 0  yields a Gp value of ~ 130v ° for ( g ) =  1.0 
and (14/15)v ° for ( g ) = 0 .  This indicates that when the 
rodlike molecules are fully aligned in the direction of flow 
the viscosity practically vanishes and that left is inde- 
pendent ofx. Substituting (g)  by 1/S in equation (38) with 
x =40, yields Gp= 310v ° for S =0.42 and Gv = 182v2 for S 
= 0.70. Recalling that the observed values of Gp at the 
point of r/r,~, were usually over 200 (except for cases of 
highly viscous solvents), it is our impression that the 
viscosities obtained from equation (38) with substitution 
of (g)  by 1/S are in far better agreement with experiment 
than without substitution. 

It is well known that in concentrated suspensions 
particle crowding increases the viscosity of the system. 
The case for spherical particles was treated by Mooney 64. 
We do not believe, however, that rodlike particles can or 
should be treated in the same manner as spherical 
particles. 

The increased polymer concentration in the anisotropic 
phase tends to increase S and decrease the solution 
viscosity. However, the very same increase in concen- 
tration increases the crowding of the rigid macromo- 
lecules, leading to an eventual sharp increase in the 
viscosity. When a dilute suspension of rigid rods flows, the 
volume of the solvent swept by the orbit of each rod is 
closely approximated by a cylinder having an elliptical 
cross section whose shape is determined by the angles the 
rigid rod makes with the direction of flow (Z-axis) of the 
solution 53. Letting (~2 be the angle in the direction of the 
major axis of the ellipse and q~3 be the angle in the 
direction of the minor axis, then for a large x (L>>d) the 
volume swept by the rodlike particle, Ve, is approximated 
by 

2nLatang02tango3 
V~ - (42) 

(1 + tanZrp3)(1 + tanZtp2) 112 

At relatively high concentrations the average values of rpz 
and q~3 are expected to be small, to become close to one 
another, and to be comparable to the angle 0 in equation 
(40). Therefore, equation (42) may be replaced by its 
approximation 

2nL3tan20 
Ve- 1 +tan20 (43) 

in which 0 can be experimentally determined as discussed 
above. In the limit of perfect alignment in the flow 
direction, the volume swept by the rodlike particle equals 
only its own volume and V E reduces to 

Vp=½n/d 2 (44) 

When the concentration of rod-like molecules in a 
flowing anisotropic solution has increased to a level such 
that each molecule cannot describe the orbit approxi- 
mated by equation (42), impingement on and friction of 
one molecule with others interfere with the flow of the 
solution causing its viscosity to increase. The rate of 
increase of the viscosity may be described by the rate in 
which lie approaches Vp. Incorporation into the corrected 
equations for viscosity yields equations for [r/], Gp and q0 
in the fully anisotropic phase, of which the following is 
typical: 

r/o~ - [222(  5 

"°[_90S\ln 2 £ -  1.8 

6 )+2]vo 
In 2£-0.61 1 V p  

v~ 

(45) 

The value of S-~0.7 upon solidification indicates that at 
that point 0 ~ 25 °. Therefore, to achieve a better agree- 
ment with reality, Vp in equation (45) should be replaced 
by the volume of VE calculated according to equation (43) 
for 0 ~ 25 °. It must be recalled that the value of S varies 
from S-0 .42  to S-~0.7 as v ° changes from v~ to 1.0. 

The resulting viscosity equations for the fully anisot- 
ropic solution of a polydisperse polymer, then, are: 

=[-222//--/ 5 6 '~ 141 1 
[r/] h9OSkln 2~-1 .8  k ln 22-0.61)+15J15V25~ 

VE 
(46) 

5 6 "~ 14] v ° 

""=L9OS\ln 22-1 .8  I-ln 2£-0.61) +iSJl_ V~,L 
VE 

(47) 

and 

, L )+qvo 
,7 -n0L9~\l  n 22-1 .8  f in  2 0.61 1 Vz,o 

v~ 

(48) 

Experimental difficulties such as very high viscosity 
and/or gellation impede measurements in the region of 
very high v2 °, therefore attempts to reach higher levels of 
accuracy in the equations above, are not warranted at 
present. 
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Figure 3 Viscosity vs concentration curve of a mesogenic polymer 
whose anisotropic phase makes its first appearance in the form of 
minute spherical droplets suspended in an isotropic matrix. Para- 
meters affecting the behaviour of the solution at dif ferent concen- 
tration levels, are indicated 

In the anisotropic region the viscosity curve decreases 
moderately with increased concentration. At q,,i, it re- 
aches its minimal value and the crowding effects of the 
rodlike particles become increasingly noticeable. With 
further increase in concentration the viscosity increases at 
an accelerated pace such that it goes to infinity at the point 
of solidification, where S-~0.7 and VE~ V2> A sample 
calculation according to equation (47), assuming L-= 400 
and 2 = 40, yielded qsp = 690v° for 0 = 30 ° and ~/~p = 1000v ° 
for 0 = 28 °, indicating that in the region of low 0(0 < 30 °) 
the viscosity increases at an extremely fast rate upon 
approaching 0-~ 25 °. The initial decrease and subsequent 
rapid increase of the viscosity are in agreement with 
experimental observations. 

DISCUSSION 

The description and explanation of the viscosity be- 
haviour of rigid backbone polymer solutions was dis- 
cussed above. 

In several works on the solution properties of PBA 27.66 
and of PPTPA 6v it is indicated that the molecular weights 
determined from ~/P by means of equation (21) were always 
substantially smaller than the corresponding molecular 
weights obtained by other techniques. We believe this 
discrepancy is an indication that v~ is not v~' and that v* 
< v~. When the correct values of 2, to be determined at v*, 
will be inserted in equation (21) then the molecular 
weights so obtained will be in far better agreement with 
the results obtained by other methods. 

The recent theory of Doi 38 concerning, among other 
variables, the viscosity of concentrated solutions of rod- 
like molecules (in the v°<v  * region) appears to be 
conceptually similar to the Goldsmith and Mason s3 
treatment of crowding effects by cylindrical particles. In 
his presentation, Doi indicates a viscosity dependence on 
c a and on M 6, in a reasonable agreement with the 
experimental data given in equations (12) and (13), 
respectively. However, the dependence of the coefficient of 
rotational diffusion, D r, on molecular weight (average rod 
length), is far off the mark when compared with experi- 
ment. According to Doi 38, Droc I lL  9 while Tsvetkov and 
coworkers 68 obtained Droc 1/M 2v for the rodlike PBA. In 
Doi's theory 38, the crowding effects are described through 
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their effects on the radius of a cylinder in space defined by 
the tip of a rodlike particle. This is akin to our elliptical 
cross-section of the particle's orbit in space 53. Doi 
maintains that the radius of the cylinder becomes com- 
parable to the diameter of the rod when c = 1/dL 2, and that 
its magnitude is ~ 1/cL 2. This indicates that for any decent 
particle lenth, the radius of the cylinder describing the 
orbit of the particle is extremely small, already at exceed- 
ingly dilute solutions, c ~ 1/L 3. The spatial disposition of 
the rodlike particles and their cylindrical orbits relative to 
the direction of flow are assumed to be isotropic in Doi's 
theory. From a comparison of equation (5) with equations 
(33), (34) and (35) one finds, in agreement with experimen- 
tal results, that in concentrated or moderately con- 
centrated solutions the average direction of the suspended 
rodlike particles is not isotropic but at an average angle 0 
relative to the flow direction. It should also be recalled 
that the onset of anisotropy in polymeric systems is 
estimated to occur at a point where the order parameter S 
is 0.42, more or less. This corresponds to an average angle 
0 of 38.4 °, indicating that a significant level of preferred 
orientation exists in the isotropic solution right below v~. 
This fact prevents one from carrying Doi's theory into the 
isotropic concentration region close to v~, and of course 
not into the anisotropic state. Thus, Doi's 38 theory may 
be applicable to dilute isotropic solutions under zero 
shear where, theoretically, there exists no flow. 

The theoretical treatment of the solution viscosity by 
Matheson 37, is limited to monodisperse systems only. The 
biphasic interval is assumed to contain two phases whose 
viscosities remain constant throughout the range. Phase 
inversion is assumed to occur midway between v~ and v~ 
and to be associated with the point qP. These assumptions 
are invalid in systems where polydispersity exists. 
Therefore, while the theoretical treatment of Matheson a7 
may not hold for polydisperse systems, it may be perfectly 
suitable for the description of the viscosity behaviour of 
suspensions of viruses or colloidal droplets 69 where the 
molecular weight of the substances in each phase do not 
change with concentration. 

CONCLUSIONS 

A viscosity vs concentration curve covering the three 
concentration ranges described in this work, is shown in 
Figure 3. In it, arbitrary units were used so that the figure 
may serve to demonstrate the variations in both r/° and 

~Sp" 
The equations describing the viscosity behaviour in the 

three ranges may be summarized by 

qo = %[[q]c  + (~/4)[tl]2c 2 + Kz(ln 2) 2 [q] %3 + . . . ]  

(49) 

for the isotropic region where [q] is defined by equation 
(9) and c is replaceable by v 2, 

(5,~ + 2) ) 
qo = q,,,t 1 + 2(,:. + 1~' V~"c (50) 

for the biphasic interval, recalling that r/re. ,, r/i. c and 2 
change with M in both phases across the concentration 
interval, and 
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o [ 2 £ 2 / / 5  6 / ] v ° 
q =r/°[ 90S\ln 2.~- 1.8 -+ In 2~-0 .61 /4+2  1 - Vzs~ 

VE 

(51) 

for the anisotropic range where S and VE change with v °. 
The equations are in qualitative and in reasonable 

quantitative agreement with experimental data in the 
literature. 
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